Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Bull Exp Biol Med ; 173(4): 433-436, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-2007183

ABSTRACT

The aim of the study was to evaluate the levels of cardiac biomarkers endothelin 1, B-natriuretic peptide (BNP), N-terminal pro-B-type natriuretic peptide (Nt-proBNP), NO2, and NO3 in patients with COVID-19 pneumonia and various degrees of pulmonary hypertension. Group 1 included patients with pulmonary artery systolic pressure <25 mm Hg, group 2 with 25-40 mm Hg, and group 3 with 40-60 mm Hg. In the group of patients with pulmonary artery systolic pressure <25 mm Hg, the level of NT-proBNP was higher than in the rest two groups by 41.3% (p=0.015) and 38.2% (p=0.015), respectively. The levels of nitrites and nitrates in group 1 patients were lower: NO2 was reduced by 31.1% (p=0.026) and 62.8% (p=0.008), and NO3 was reduced by 28% (p=0.029) and by 54.6% (p=0.006), respectively. No other changes in the parameters in patients receiving oxygen therapy were found. These findings suggest that severe course of COVID-19 in patients with severe pulmonary hypertension is associated with impaired nitrite and nitrate metabolism and reduced levels of Nt-proBNP.


Subject(s)
COVID-19 , Hypertension, Pulmonary , Biomarkers , COVID-19/complications , Endothelin-1 , Humans , Natriuretic Peptide, Brain , Nitrates , Nitrites , Nitrogen Dioxide , Oxygen , Peptide Fragments
2.
Int J Obes (Lond) ; 46(10): 1801-1807, 2022 10.
Article in English | MEDLINE | ID: covidwho-1937412

ABSTRACT

BACKGROUND/OBJECTIVES: Patients affected by obesity and Coronavirus disease 2019, the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), appear to have a higher risk for intensive care (ICU) admission. A state of low-grade chronic inflammation in obesity has been suggested as one of the underlying mechanisms. We investigated whether obesity is associated with differences in new inflammatory biomarkers mid-regional proadrenomedullin (MR-proADM), C-terminal proendothelin-1 (CT-proET-1), and clinical outcomes in critically ill patients with SARS-CoV-2 pneumonia. SUBJECTS/METHODS: A total of 105 critically ill patients with SARS-CoV-2 pneumonia were divided in patients with obesity (body mass index (BMI) ≥ 30 kg/m2, n = 42) and patients without obesity (BMI < 30 kg/m2, n = 63) and studied in a retrospective observational cohort study. MR-proADM, CT-proET-1 concentrations, and conventional markers of white blood count (WBC), C-reactive protein (CRP), and procalcitonin (PCT) were collected during the first 7 days. RESULTS: BMI was 33.5 (32-36.1) and 26.2 (24.7-27.8) kg/m2 in the group with and without obesity. There were no significant differences in concentrations MR-proADM, CT-proET-1, WBC, CRP, and PCT at baseline and the next 6 days between patients with and without obesity. Only MR-proADM changed significantly over time (p = 0.039). Also, BMI did not correlate with inflammatory biomarkers (MR-proADM rho = 0.150, p = 0.125, CT-proET-1 rho = 0.179, p = 0.067, WBC rho = -0.044, p = 0.654, CRP rho = 0.057, p = 0.564, PCT rho = 0.022, p = 0.842). Finally, no significant differences in time on a ventilator, ICU length of stay, and 28-day mortality between patients with or without obesity were observed. CONCLUSIONS: In critically ill patients with confirmed SARS-CoV-2 pneumonia, obesity was not associated with differences in MR-proADM, and CT-proET-1, or impaired outcome. TRIAL REGISTRATION: Netherlands Trial Register, NL8460.


Subject(s)
Adrenomedullin , COVID-19 , Endothelin-1 , Obesity , Peptide Fragments , Protein Precursors , SARS-CoV-2 , Adrenomedullin/blood , Biomarkers/blood , C-Reactive Protein/analysis , COVID-19/blood , COVID-19/complications , COVID-19/diagnosis , Critical Care , Critical Illness , Disease Progression , Endothelin-1/blood , Humans , Obesity/complications , Patient Admission , Peptide Fragments/blood , Procalcitonin/blood , Prognosis , Protein Precursors/blood , Retrospective Studies
3.
J Mol Cell Cardiol ; 167: 92-96, 2022 06.
Article in English | MEDLINE | ID: covidwho-1757945

ABSTRACT

Virus induced endothelial dysregulation is a well-recognised feature of severe Covid-19 infection. Endothelin-1 (ET-1) is the most highly expressed peptide in endothelial cells and a potent vasoconstrictor, thus representing a potential therapeutic target. ET-1 plasma levels were measured in a cohort of 194 Covid-19 patients stratified according to the clinical severity of their illness. Hospitalised patients, including those who died and those developing acute myocardial or kidney injury, had significantly elevated ET-1 plasma levels during the acute phase of infection. The results support the hypothesis that endothelin receptor antagonists may provide clinical benefit for certain Covid-19 patients.


Subject(s)
COVID-19 , Endothelin-1 , Endothelial Cells , Endothelin Receptor Antagonists , Humans , Receptor, Endothelin A , Receptors, Endothelin , Vasoconstrictor Agents
4.
Thromb Res ; 209: 106-114, 2022 01.
Article in English | MEDLINE | ID: covidwho-1550090

ABSTRACT

INTRODUCTION: Endothelial damage and thrombosis caused by COVID-19 may imperil cardiovascular health. More than a year since the WHO declared COVID-19 pandemic, information on its effects beyond the acute phase is lacking. We investigate endothelial dysfunction, coagulation and inflammation, 3 months post-COVID-19. MATERIALS AND METHODS: A cohort study was conducted including 203 patients with prior COVID-19. Macrovascular dysfunction was assessed by measuring the carotid artery diameter in response to hand immersion in ice-water. A historic cohort of 312 subjects served as controls. Propensity score matching corrected for baseline differences. Plasma concentrations of endothelin-1 were measured in patients post-COVID-19, during the acute phase, and in matched controls. Coagulation enzyme:inhibitor complexes and inflammatory cytokines were studied. RESULTS AND CONCLUSIONS: The prevalence of macrovascular dysfunction did not differ between the COVID-19 (18.6%) and the historic cohort (22.5%, RD -4%, 95%CI: -15-7, p = 0.49). Endothelin-1 levels were significantly higher in acute COVID-19 (1.67 ± 0.64 pg/mL) as compared to controls (1.24 ± 0.37, p < 0.001), and further elevated 3 months post-COVID-19 (2.74 ± 1.81, p < 0.001). Thrombin:antithrombin(AT) was high in 48.3%. Markers of contact activation were increased in 16-30%. FVIIa:AT (35%) and Von Willebrand Factor:antigen (80.8%) were elevated. Inflammatory cytokine levels were high in a majority: interleukin(IL)-18 (73.9%), IL-6 (47.7%), and IL-1ra (48.9%). At 3 months after acute COVID-19 there was no indication of macrovascular dysfunction; there was evidence, however, of sustained endothelial cell involvement, coagulation activity and inflammation. Our data highlight the importance of further studies on SARS-CoV-2 related vascular inflammation and thrombosis, as well as longer follow-up in recovered patients.


Subject(s)
COVID-19 , Endothelin-1 , Cohort Studies , Humans , Inflammation , Pandemics , SARS-CoV-2
5.
J Crit Care ; 66: 173-180, 2021 12.
Article in English | MEDLINE | ID: covidwho-1338432

ABSTRACT

PURPOSE: We assessed the ability of mid-regional proadrenomedullin (MR-proADM) and C-terminal proendothelin-1 (CT-proET-1) to predict 28-day mortality in critically ill patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia. METHODS: Biomarkers were collected during the first seven days in this prospective observational cohort study. We investigated the relationship between biomarkers and mortality in a multivariable Cox regression model adjusted for age and SOFA score. RESULTS: In 105 critically ill patients with confirmed SARS-CoV-2 pneumonia 28-day mortality was 28.6%. MR-proADM and CT-proET-1 were significantly higher in 28-day non-survivors at baseline and over time. ROC curves revealed high accuracy to identify non-survivors for baseline MR-proADM and CT-proET-1, AUC 0.84, (95% CI 0.76-0.92), p < 0.001 and 0.79, (95% CI 0.69-0.89), p < 0.001, respectively. The AUC for prediction of 28-day mortality for MR-proADM and CT-proET-1 remained high over time. MR-proADM ≥1.57 nmol/L and CT-proET-1 ≥ 111 pmol/L at baseline were significant predictors for 28-day mortality (HR 6.80, 95% CI 3.12-14.84, p < 0.001 and HR 3.72, 95% CI 1.71-8.08, p 0.01). CONCLUSION: Baseline and serial MR-proADM and CT-proET-1 had good ability to predict 28-day mortality in critically ill patients with SARS-CoV-2 pneumonia. TRIAL REGISTRATION: NEDERLANDS TRIAL REGISTER, NL8460.


Subject(s)
COVID-19 , Pneumonia , Adrenomedullin , Biomarkers , Critical Illness , Endothelin-1 , Endothelium , Humans , Peptide Fragments , Prognosis , Prospective Studies , Protein Precursors , SARS-CoV-2
6.
Respir Res ; 22(1): 148, 2021 May 13.
Article in English | MEDLINE | ID: covidwho-1228995

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease (COVID-19) has been linked to thrombotic complications and endothelial dysfunction. We assessed the prognostic implications of endothelial activation through measurement of endothelin-I precursor peptide (proET-1), the stable precursor protein of Endothelin-1, in a well-defined cohort of patients hospitalized with COVID-19. METHODS: We measured proET-1 in 74 consecutively admitted adult patients with confirmed COVID-19 and compared its prognostic accuracy to that of patients with community-acquired pneumonia (n = 876) and viral bronchitis (n = 371) from a previous study by means of logistic regression analysis. The primary endpoint was all-cause 30-day mortality. RESULTS: Overall, median admission proET-1 levels were lower in COVID-19 patients compared to those with pneumonia and exacerbated bronchitis, respectively (57.0 pmol/l vs. 113.0 pmol/l vs. 96.0 pmol/l, p < 0.01). Although COVID-19 non-survivors had 1.5-fold higher admission proET-1 levels compared to survivors (81.8 pmol/l [IQR: 76 to 118] vs. 53.6 [IQR: 37 to 69]), no significant association of proET-1 levels and mortality was found in a regression model adjusted for age, gender, creatinine level, diastolic blood pressure as well as cancer and coronary artery disease (adjusted OR 0.1, 95% CI 0.0009 to 14.7). In patients with pneumonia (adjusted OR 25.4, 95% CI 5.1 to 127.4) and exacerbated bronchitis (adjusted OR 120.1, 95% CI 1.9 to 7499) we found significant associations of proET-1 and mortality. CONCLUSIONS: Compared to other types of pulmonary infection, COVID-19 shows only a mild activation of the endothelium as assessed through measurement of proET-1. Therefore, the high mortality associated with COVID-19 may not be attributed to endothelial dysfunction by the surrogate marker proET-1.


Subject(s)
COVID-19/mortality , COVID-19/physiopathology , Endothelin-1/analysis , Endothelium, Vascular/physiopathology , Protein Precursors/analysis , Age Factors , Aged , Aged, 80 and over , Biomarkers/analysis , Blood Pressure , Cohort Studies , Creatinine/blood , Endpoint Determination , Female , Humans , Male , Middle Aged , Prognosis , Prospective Studies , Reproducibility of Results , Risk Factors , Sex Factors , Survival Analysis
7.
Pulm Pharmacol Ther ; 69: 102035, 2021 08.
Article in English | MEDLINE | ID: covidwho-1209037

ABSTRACT

The novel coronavirus 2019 (COVID-19) infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global pandemic that requires a multi-faceted approach to tackle this unprecedent health crisis. Therapeutics to treat COVID-19 are an integral part of any such management strategy and there is a substantial unmet need for treatments for individuals most at risk of severe disease. This perspective review provides rationale of a combined therapeutic regimen of selective endothelin-A (ET-A) receptor antagonism and sodium glucose co-transporter-2 (SGLT-2) inhibition to treat COVID-19. Endothelin is a potent vasoconstrictor with pro-inflammatory and atherosclerotic effects. It is upregulated in a number of conditions including acute respiratory distress syndrome and cardiovascular disease. Endothelin mediates vasocontractility via endothelin (ET-A and ET-B) receptors on vascular smooth muscle cells (VSMCs). ET-B receptors regulate endothelin clearance and are present on endothelial cells, where in contrast to their role on VSMCs, mediate vasodilation. Therefore, selective endothelin-A (ET-A) receptor inhibition is likely the optimal approach to attenuate the injurious effects of endothelin and may reduce ventilation-perfusion mismatch and pulmonary inflammation, whilst improving pulmonary haemodynamics and oxygenation. SGLT-2 inhibition may dampen inflammatory cytokines, reduce hyperglycaemia if present, improve endothelial function, cardiovascular haemodynamics and cellular bioenergetics. This combination therapeutic approach may therefore have beneficial effects to mitigate both the pulmonary, metabolic and cardiorenal manifestations of COVID-19. Given these drug classes include medicines licensed to treat heart failure, diabetes and pulmonary hypertension respectively, information regarding their safety profile is established. Randomised controlled clinical trials are the best way to determine efficacy and safety of these medicines in COVID-19.


Subject(s)
COVID-19 , Endothelin Receptor Antagonists , Endothelial Cells/metabolism , Endothelin-1/metabolism , Endothelins , Glucose , Humans , SARS-CoV-2 , Sodium , Sodium-Glucose Transporter 2
SELECTION OF CITATIONS
SEARCH DETAIL